Homework 10 : This homework is due on November 15.

1. Which of the following functions are linear transformations ?
(a) $L: R_{2} \rightarrow R_{3}$ defined by $L\left(\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]\right)=\left[\begin{array}{lll}u_{1}+3 u_{2} & -u_{2} & u_{1}-u_{2}\end{array}\right]$.
(b) $L: R_{3} \rightarrow R_{3}$ defined by $L\left(\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]\right)=\left[\begin{array}{lll}2 u_{1} & u_{1}^{2}+u_{2}^{2} & 2 u_{3}^{2}\end{array}\right]$.
(c) $L: R_{3} \rightarrow R_{3}$ defined by $L\left(\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]\right)=\left[\begin{array}{lll}u_{1} & 0 & u_{3}\end{array}\right]$.
(d) $L: P_{2} \rightarrow P_{3}$ defined by $L(p(t))=t^{3} p^{\prime}(0)+t^{2} p(0)$. (Here $p^{\prime}(t)$ stands for derivative)
(e) $L: M_{n n} \rightarrow M_{n n}$ defined by $L(A)=A^{-1}$.
(f) Fix a 3×3 matrix X. Let $L: M_{33} \rightarrow M_{33}$ be defined by $L(A)=A X-X A$.
2. Find the standard matrix representing the linear transformation L in each of the following problems
(a) $L: R^{3} \rightarrow R_{2}$ defined by $L\left(\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]\right)=\left[\begin{array}{c}u_{2}+5 u_{3} \\ 2 u_{1}\end{array}\right]$.
(b) $L: R^{2} \rightarrow R_{2}$ defined by $L\left(\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]\right)=\left[\begin{array}{c}u_{1}+k u_{2} \\ u_{2}\end{array}\right]$.
(c) $L: R^{3} \rightarrow R^{3}$ defined by $L(\mathbf{u})=k \mathbf{u}$.
3. Suppose the standard matrix representing $L: R^{3} \rightarrow R^{3}$ is given by $\left[\begin{array}{ccc}0 & -2 & 3 \\ 1 & -4 & 2 \\ -2 & 0 & 1\end{array}\right]$. Find $L\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)$ and $L\left(\left[\begin{array}{c}4 \\ 1 \\ -2\end{array}\right]\right)$.
4. Let $L: P_{2} \rightarrow R^{1}$ be the linear transformation given by $L\left(t^{2}+2\right)=5, L(2 t-1)=1$ and $L\left(t^{2}+t+1\right)=-2$. Find the value of $L\left(2 t^{2}+5 t+4\right)$ and $L\left(a t^{2}+b t+c\right)$.
5. Let $L: R^{2} \rightarrow R^{2}$ be the linear transformation given by $L\left(\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]\right)=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$. Which one of $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ is in $\operatorname{Ker}(L)$? Find a basis for and dimension of $\operatorname{Ker}(L)$.
6. Let $L: R_{4} \rightarrow R_{2}$ be the linear transformation defined by $L\left(\left[\begin{array}{llll}u_{1} & u_{2} & u_{3} & u_{4}\end{array}\right]\right)=\left[\begin{array}{lll}u_{1}-u_{4} & u_{2}+u_{3}\end{array}\right]$. Find a basis for and dimension of $\operatorname{Ker}(L)$. Is L one-to-one?
7. Let $L: R_{2} \rightarrow R_{3}$ be a linear transformation defined by $\left.L\left(\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]\right)=\left[\begin{array}{lll}u_{2} & u_{1}+u_{2} & u_{1}\end{array}\right]\right)$. Find $\operatorname{Ker}(L)$. Is L one-to-one?
8. Let $L: M_{22} \rightarrow M_{22}$ be a linear transformation defined by $L\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{ll}a+b & b+c \\ a+d & b+d\end{array}\right]$. Find a basis for and dimension of $\operatorname{Ker}(L)$.
9. Find a basis for and dimension of the kernel of $L: R^{5} \rightarrow R^{4}$ where

$$
L\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]\right)=\left[\begin{array}{ccccc}
1 & 0 & -1 & 3 & 1 \\
1 & 0 & 0 & 2 & -1 \\
2 & 0 & -1 & 5 & -1 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]
$$

