1. Are the following systems of linear equations consistent? If yes, then find a solution.
(a) $x+2 y=8 \quad 3 x-4 y=4$
(b) $2 x-3 y+4 z=-12 \quad x-2 y+z=-5 \quad 3 x+y+2 z=1$
(c) $x+3 y=-4 \quad 2 x+5 y=-8 \quad x+3 y=-5$
2. Let

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 4
\end{array}\right) B=\left(\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 2
\end{array}\right) C=\left(\begin{array}{ccc}
3 & -1 & 3 \\
4 & 1 & 5 \\
2 & 1 & 3
\end{array}\right) D=\left(\begin{array}{cc}
3 & -2 \\
2 & 4
\end{array}\right) \\
& E=\left(\begin{array}{ccc}
2 & -4 & 5 \\
0 & 1 & 4 \\
3 & 2 & 1
\end{array}\right) F=\left(\begin{array}{cc}
-4 & 5 \\
2 & 3
\end{array}\right)
\end{aligned}
$$

If possible compute the indicated linear combinations
(a) $2 B+F$
(b) $3 D+2 F$
(c) $(C+E)^{T}$
(d) A^{T} and $\left(A^{T}\right)^{T}$
(e) $A^{T}+2 B^{T}$
3. Let $\mathbf{a}=\mathbf{b}=\left(\begin{array}{c}-3 \\ 2 \\ x\end{array}\right)$. If $\mathbf{a} \cdot \mathbf{b}=17$, then find x.
4. Let A, B, C, D, E be the matrices from Problem (2) above. If possible compute the following
(a) $A B$ and $B A$
(b) $D A+B$
(c) $A(C+3 E)$
(d) $C^{T} B$
5. Determine a constant k such that $(k A)^{T}(k A)=1$, where $A=\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right)$. Is there more than one value of k that could be used ?

