MATH 3333

Final Exam

December 14, 2007

Name:

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- Best of Luck.
i) Consider the function

$$
L: R^{3} \rightarrow R^{3} \text { defined by } L\left(\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
4 u_{2} \\
4 u_{1}+3 u_{3} \\
3 u_{2}
\end{array}\right]
$$

a) (10 points) Show that L is a linear transformation.
b) (10 points) Find a basis for and dimension of the Kernel of L.
c) (10 points) Find a basis for and dimension of the Range of L.
d) (10 points) Let $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ be the standard basis of R^{3}. Find the matrix representing L with respect to the ordered basis S.
e) (20 points) Let $T=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$ be another basis of R^{3}. Find the matrix representing L with respect to the ordered basis T.
ii) Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
a) (15 points) Find the characteristic polynomial and eigenvalues of A.
b) (20 points) Find the eigenspace associated to eigenvalues found in part (a).
c) (15 points) Find a non-singular matrix P which satisfies $P^{-1} A P=D$, where D is a diagonal matrix. Check the identity $P^{-1} A P=D$ by explicit computation.
iii) (20 points) Use Cramer's rule to solve the following system of linear equations

$$
2 x-y+4 z=0 \quad 3 y-3 z=2 \quad x+y+z=1
$$

iv) (30 points) Determine which of the given subsets forms a basis of R^{3}. Express the vector $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ as a linear combination of the vectors in each subset that is a basis.
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$,
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 9\end{array}\right]\right\}$
v) (20 points) Consider the following right angled triangle with sides a, b, c.

Consider the matrix $A=\left[\begin{array}{lll}0 & a & 0 \\ a & 0 & b \\ 0 & b & 0\end{array}\right]$. Show that the eigenvalues of A are $0, c,-c$.
vi) (20 points) Let $A=\left[\begin{array}{llll}1 & a & a^{2} & a^{3} \\ 1 & b & b^{2} & b^{3} \\ 1 & c & c^{2} & c^{3} \\ 1 & d & d^{2} & d^{3}\end{array}\right]$. Show that

$$
\operatorname{det}(A)=(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)
$$

Hint : It is easier if you simplify the matrix before you start taking determinants. Also, you might find the following factorization formulas useful : $x^{2}-y^{2}=(x-y)(x+y)$ and $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$.

