Math 3113, Quiz IV, Solution

1. Consider the initial value problem

$$
t x^{\prime \prime \prime}+2 x^{\prime \prime}+(t-1) x^{\prime}=0 \quad x(0)=x^{\prime}(0)=x^{\prime \prime}(0)=0 .
$$

If $\mathcal{L}\{x(t)\}=X(s)$ then obtain the first order differential equation satisfied by $X(s)$. Write it in the separable form but DO NOT solve it.
We have $\mathcal{L}\left\{t x^{\prime \prime \prime}\right\}=-\left(s^{3} X(s)\right)^{\prime}=-\left(3 s^{2} X(s)+s^{3} X^{\prime}(s)\right), \mathcal{L}\left\{2 x^{\prime \prime}\right\}=2 s^{2} X(s)$ and $\mathcal{L}\{(t-$ 1) $\left.x^{\prime}\right\}=\mathcal{L}\left\{t x^{\prime}\right\}-\mathcal{L}\left\{x^{\prime}\right\}=-(s X(s))^{\prime}-s X(s)=-\left(X(s)+s X^{\prime}(s)\right)-s X(s)$. Hence applying Laplace Transform to the differential equation and collecting terms involving $X(s)$ and $X^{\prime}(s)$ we get

$$
X^{\prime}(s)\left(-s^{3}-s\right)+X(s)\left(-s^{2}-s-1\right)=0 \Rightarrow \frac{X^{\prime}(s)}{X(s)}=-\frac{s^{2}+s+1}{s^{3}+s}
$$

(Note that if you solve the above separable DE you get that $X(s)$ equals the expression given in problem 2 below. Hence the 2 problems are parts of just one problem.)
2. Find the Laplace inverse of

$$
X(s)=\frac{1}{s\left(s^{2}+1\right)}
$$

There are several ways to solve this :
(a) Using Convolution product Theorem :

$$
\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+1\right)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} * \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}=\sin t * 1=\int_{0}^{t} \sin \tau d \tau=1-\cos t .
$$

(b) Using Partial Fractions :

$$
\frac{1}{s\left(s^{2}+1\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+1}=\frac{1}{s}-\frac{s}{s^{2}+1} \Rightarrow \mathcal{L}^{-1}\{X(s)\}=1-\cos t
$$

(c) Using Transform formula for integrals :

$$
\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+1\right)}\right\}=\mathcal{L}^{-1}\left\{\frac{\frac{1}{s^{2}+1}}{s}\right\}=\int_{0}^{t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} d \tau=\int_{0}^{t} \sin \tau d \tau=1-\cos t
$$

Hence, the solution is

$$
x(t)=\mathcal{L}^{-1}\{X(s)\}=1-\cos t
$$

