Math 3113, Quiz I

January 31, 2007

1. (7 points)
(a) Is $x^{2} y^{\prime}=1-x^{2}+y^{2}-x^{2} y^{2}$ a separable differential equation? If so, then separate it [write it in the form (terms involving $y) \times y^{\prime}=($ terms involving $\left.x)\right]$. Do not solve the differential equation.

Factorize the right hand side of the differential equation to get $x^{2} y^{\prime}=\left(1-x^{2}\right)(1+$ y^{2}) and upon rearranging the terms we get

$$
\frac{1}{1+y^{2}} y^{\prime}=\frac{1-x^{2}}{x^{2}}
$$

Hence we conclude that the differential equation is separable.
(b) Is $x y^{\prime}+(2 x-3) y=4 x^{4}$ a separable differential equation? If so, then separate it [write it in the form (terms involving y) $\times y^{\prime}=($ terms involving $x)$]. Do not solve the differential equation.

No amount of manipulation can lead to separation of variables. Hence the differential equation is not separable.
2. (7 points)
(a) Is $x^{2} y^{\prime}=1-x^{2}+y^{2}-x^{2} y^{2}$ a linear first order differential equation? If so, write it in the standard for $y^{\prime}+P(x) y=Q(x)$ and find the integrating factor. Do not solve the differential equation.

The y term occurs with an exponent 2. In a linear first order differential equation we are not allowed that. Hence the differential equation is not linear first order.
(b) Is $x y^{\prime}+(2 x-3) y=4 x^{4}$ a linear first order differential equation? If so, write it in the standard form $y^{\prime}+P(x) y=Q(x)$ and find the integrating factor. Do not solve the differential equation.

The differential equation only has the first derivative and the y terms do not occur with higher powers. Hence this is a linear first order differential equation. To get it in the standard form divide both sides by x to get $y^{\prime}+\left(\frac{2 x-3}{x}\right) y=4 x^{3}$. To get the integrating factor

$$
\rho(x)=e^{\int\left(\frac{2 x-3}{x}\right) d x}=e^{\int\left(2-\frac{3}{x}\right) d x}=e^{2 x-3 \ln x}=e^{2 x} x^{-3}
$$

3. (6 points) Is there a value of the constant C for which $y(x)=C\left(e^{x}+x\right)$ is a solution of the differential equation $y^{\prime}+y=0$? Explain your answer.

If one sets $C=0$ then we immediately get $y(x)=0$ and hence $y^{\prime}(x)=0$ which certainly satisfies the relation $y^{\prime}+y=0$. So, just by inspection we can see that $C=0$ gives a solution to the differential equation. A systematic analysis can show that $C=0$ is the only value for which $y(x)$ is a solution :
$y^{\prime}(x)=C\left(e^{x}+1\right) \Longrightarrow y^{\prime}+y=C\left(e^{x}+1\right)+C\left(e^{x}+x\right)=C\left(2 e^{x}+x+1\right)$. Now $y^{\prime}+y=0$ implies that

$$
C\left(2 e^{x}+x+1\right)=0 \text { for all values of } x
$$

which is possible if and only if $C=0$.

