MATH 3113
 Midterm I, Form B, SOLUTIONS
 March 2, 2007

Name:

I.D. no. :

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- Best of Luck.
i) (15 Points) Find the general solution of the differential equation

$$
x^{2} \frac{d y}{d x}=5 x^{5} y^{2}+4 y^{2} x^{4}
$$

Divide both sides of the equation with $x^{2} y^{2}$ to get the separable differential equation

$$
\begin{aligned}
\frac{1}{y^{2}} \frac{d y}{d x} & =5 x^{3}+4 x^{2} \\
\int \frac{1}{y^{2}} d y & =\int\left(5 x^{3}+4 x^{2}\right) d x+C \\
-\frac{1}{y} & =\frac{5}{4} x^{4}+\frac{4}{3} x^{3}+C \\
y(x) & =\frac{-1}{\frac{5}{4} x^{4}+\frac{4}{3} x^{3}+C}
\end{aligned}
$$

ii) (15 Points) Show that the following differential equation is exact and then solve it

$$
\left(5 x^{4} y^{5}+2 y^{2}\right) d x+\left(5 x^{5} y^{4}+4 x y+3 y\right) d y=0 .
$$

We have $M=5 x^{4} y^{5}+2 y^{2}$ and $N=5 x^{5} y^{4}+4 x y+3 y$. To show exactness we have to show that $M_{y}=N_{x}$.

$$
M_{y}=25 x^{4} y^{4}+4 y, \quad N_{x}=25 x^{4} y^{4}+4 y .
$$

Now, we first use $F_{x}=M$ and integrate with respect to x treating y to be fixed constant and get

$$
F(x, y)=x^{5} y^{5}+2 y^{2} x+g(y)
$$

Using $F_{y}=N$ we get $g^{\prime}(y)=3 y$ which implies $g(y)=3 y^{2} / 2$. Hence the implicit solution of the differential equation is

$$
x^{5} y^{5}+2 y^{2} x+3 y^{2} / 2=C .
$$

iii) (15 Points) A tank contains 3000 liters of a solution consisting of 200 Kg . of salt dissolved in water. Pure water is pumped into the tank at the rate of 30 liters per second, and the mixture is pumped out at the same rate. Find a formula for the amount of salt in the tank at time t.

We have $r_{i}=30=r_{o}, c_{i}=0$, since the water pumped in is pure water, $V_{0}=3000$ and $x(0)=200$. Since $V(t)=V_{0}+\left(r_{i}-r_{o}\right) t$, we get $V(t)=3000$. The differential equation satisfied by $x(t)$ is

$$
x^{\prime}=r_{i} c_{i}-r_{o} c_{o}(t)=r_{i} c_{i}-r_{o} x(t) / V(t)
$$

which gives us

$$
\begin{aligned}
x^{\prime} & =-30 \frac{x}{3000} \Longrightarrow x^{\prime}=-\frac{x}{100} \\
\int \frac{1}{x} d x & =\int-\frac{1}{100} d t+C \Longrightarrow \ln (x)=\frac{t}{100}+C \\
x(t) & =A e^{-t / 100} \text { where } A=e^{C}
\end{aligned}
$$

We use the initial condition $x(0)=200$ to get $A=200$. Hence the final answer is

$$
x(t)=200 e^{-t / 100}
$$

iv) (15 Points) Find the general solution of the system of differential equations

$$
\begin{aligned}
x^{\prime} & =2 y \\
y^{\prime} & =3 y-\frac{5}{2} x
\end{aligned}
$$

Differentiate both sides of the first equation with respect to t and use the second equation to get $x^{\prime \prime}=y^{\prime}=6 y-5 x$. Again using the first equation we get

$$
x^{\prime \prime}-3 x^{\prime}+5 x=0
$$

The characteristic equation is $r^{2}-3 r+5=0$ whose roots are $r=\frac{3}{2}+i \frac{\sqrt{11}}{2}, r=\frac{3}{2}-i \frac{\sqrt{11}}{2}$. The corresponding general solution is

$$
x(t)=e^{\frac{3}{2} t}\left(C_{1} \cos \left(\frac{\sqrt{11}}{2} t\right)+C_{2} \sin \left(\frac{\sqrt{11}}{2} t\right)\right)
$$

Again using the first equation $y=x^{\prime} / 2$ we obtain using product rule

$$
\begin{aligned}
y(t)= & \frac{1}{2}\left(\frac{3}{2} e^{\frac{3}{2} t}\left(C_{1} \cos \left(\frac{\sqrt{11}}{2} t\right)+C_{2} \sin \left(\frac{\sqrt{11}}{2} t\right)\right)+\right. \\
& \left.e^{\frac{3}{2} t}\left(-\frac{\sqrt{11}}{2} C_{1} \sin \left(\frac{\sqrt{11}}{2} t\right)+\frac{\sqrt{11}}{2} C_{2} \cos \left(\frac{\sqrt{11}}{2} t\right)\right)\right)
\end{aligned}
$$

v) (20 Points) Solve the initial value problem

$$
y^{\prime \prime}-5 y^{\prime}=10, \quad y(0)=2, \quad y^{\prime}(0)=3
$$

This is a non-homogeneous differential equation with constant coefficients and hence the general solution is of the form

$$
y(x)=y_{c}(x)+y_{p}(x)
$$

Computation of y_{c} : The associated homogeneous D.E. is $y^{\prime \prime}-5 y^{\prime}=0$ whose characteristic equation is $r^{2}-5 r=0$. The roots are $r=0, r=5$ and hence we get

$$
y_{c}(x)=C_{1}+C_{2} e^{5 x}
$$

Computation of y_{p} : Here $f(x)=10$ and hence the first guess is $y_{p}=A$. But this lead to duplication and hence we have to make the second guess by multiplying with $x: y_{p}(x)=A x$. We substitute this in the original differential equation to find the value of A. Since $y_{p}^{\prime}=A$ and $y_{p}^{\prime \prime}=0$ we get $0-5(A)=10 \Longrightarrow A=-2$ and hence

$$
y_{p}(x)=-2 x
$$

Combining these two we get the general solution

$$
y(x)=C_{1}+C_{2} e^{5 x}-2 x
$$

To find the values of C_{1}, C_{2} we have to use the initial value conditions. This gives us

$$
2=y(0)=C_{1}+C_{2} \text { and } 3=y^{\prime}(0)=5 C_{1}-2
$$

and hence $C_{1}=1, C_{2}=1$. The final answer is

$$
y(x)-1+e^{5 x}-2 x
$$

vi) (20 Points) Use variation of parameters to find the particular solution y_{p} of the differential equation

$$
y^{\prime \prime}+16 y=2 \sec (4 x)
$$

Computation of y_{c} : The associated homogeneous D.E. is $y^{\prime \prime}+16 y^{\prime}=0$ whose charac$\overline{\text { teristic equation is }} r^{2}+16=0$. The roots are $r=4 i, r=-4 i$ and hence we get

$$
y_{c}(x)=C_{1} \cos (4 x)+C_{2} \sin (4 x)
$$

The method of variation of parameters tells us that the particular solution is of the form

$$
y_{p}(x)=u_{1}(x) \cos (4 x)+u_{2}(x) \sin (4 x)
$$

where the functions u_{1} and u_{2} satisfy the conditions

$$
\begin{aligned}
u_{1}^{\prime} \cos (4 x)+u_{2}^{\prime} \sin (4 x) & =0 \\
-u_{1}^{\prime} 4 \sin (4 x)+u_{2}^{\prime} 4 \cos (4 x) & =2 \sec (4 x)
\end{aligned}
$$

Solving for u_{1}^{\prime} and u_{2}^{\prime} we get

$$
u_{1}^{\prime}(x)=-\frac{1}{2} \tan (4 x) \text { and } u_{2}^{\prime}(x)=\frac{1}{2}
$$

Integrating these we get

$$
u_{1}(x)=-\frac{1}{8} \ln |\sec (4 x)| \text { and } u_{2}(x)=\frac{x}{2}
$$

Substituting these we get the final answer

$$
y_{p}(x)=-\frac{1}{8} \ln |\sec (4 x)| \cos (4 x)+\frac{x}{2} \sin (4 x) .
$$

