MATH 3113
 Midterm II
 November 14, 2008

Name:

I.D. no.:

- Calculators are not allowed. The problems are set so that you should not need calculators at all.
- Show as much work as possible. Answers without explanation will not receive any credit.
- Best of Luck.
i) a) (8 Points) Find

$$
\mathcal{L}^{-1}\left\{\frac{4 s+7}{s^{2}+2 s+10}\right\}
$$

b) (12 Points) Find the Laplace transform of the function $f(t)$ given by the following graph.
ii) a) (15 Points) Find the partial fractions decomposition of

$$
\frac{5 s^{2}+2 s+1}{(s+1)\left(s^{2}+1\right)}
$$

b) (5 Points) Find

$$
\mathcal{L}^{-1}\left\{\frac{5 s^{2}+2 s+1}{(s+1)\left(s^{2}+1\right)}\right\}
$$

iii) (20 Points) Using the Laplace transform method, find the solution to the following initial value problem

$$
x^{\prime \prime}+x=4 e^{-x}, \quad x(0)=5, x^{\prime}(0)=-3
$$

Hint: Solution to problem (ii) may come in handy.
iv) (15 Points) Find the Laplace transform of

$$
f(t)= \begin{cases}\sin (t), & \text { if } 0 \leq t<2 \pi \\ 0, & \text { if } 2 \pi \leq t<4 \pi \\ \cos (t), & \text { if } 4 \pi \leq t<6 \pi \\ 0, & \text { if } 6 \pi \leq t\end{cases}
$$

v) (10 Points) Find the singular points and guaranteed radius of convergence of a power series solution in powers of $x-1$ of the differential equation

$$
\left(3+x^{2}\right) y^{\prime \prime}+(2 x+1) y^{\prime}+4 x y=0
$$

vi) (20 Points) Find the recurrence relation and the first 3 non-zero terms of each of the 2 linearly independent power series solutions of the differential equation

$$
\left(2-x^{3}\right) y^{\prime \prime}+x^{4} y=0 .
$$

